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Abstract

We present a lattice-Boltzmann method coupled with an immersed boundary technique for the simulation of bluff body
flows. The lattice-Boltzmann method for the modeling of the Navier–Stokes equations, is enhanced by a forcing term to
account for the no-slip boundary condition on a non-grid conforming boundary. We investigate two alternatives of cou-
pling the boundary forcing term with the grid nodes, namely the direct and the interpolated forcing techniques. The present
LB–IB methods are validated in simulations of the incompressible flow past an impulsively started cylinder at low and
moderate Reynolds numbers. We present diagnostics such as the near wall vorticity field and the drag coefficient and com-
parisons with previous computational and experimental works and assess the advantages and drawbacks of the two
techniques.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

A number of important flow phenomena in science and engineering, ranging for example from hemody-
namics [3] and fish swimming [35] to robotic insects [11] and prosthetic heart valves [29], involve flows past
complex geometries. The computational study of these flows requires the development of numerical techniques
capable of handling complex unsteady geometries. A number of computational methods, such as finite ele-
ments, finite volume and unstructured mesh finite differences (see [23, and references therein]) have been devel-
oped that can handle complex geometries for systems such as blood flow past endovascular devices [5] or
multiphase turbulent flows in realistic combustors [26]. More recently, lattice-Boltzmann methods [34] have
been advocated as effective computational tools for the simulation of complex flows ranging from car aerody-
namics to flows in porous media. The results of these simulations may depend however on the grid distribution
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[31,18], while intensive meshing requirements may adversely affect the efficiency of the simulations for flows
with time dependent, complex geometries. In the early 1970s motivated by problems in biological flows, Peskin
[28,30] pioneered the use of immersed boundary methods that require a cartesian grid and a suitable modifi-
cation of the governing equations to take into account the effects of the boundaries. The simplicity in meshing
and the relative ease of implementation of these techniques has led to intensive research efforts (see [24, and
references therein]) making the IB technique a potent alternative for simulations of flows with complex,
unsteady geometries.

In this work, we present the coupling of immersed boundary (IB) and lattice-Boltzmann (LB) methods. LB
models [34] solve the Navier–Stokes equations of incompressible fluids by following the evolution of distribu-
tion functions on a lattice. Boundaries are approximated on the regular lattice in a staircase fashion making
them suitable for simulations of flows past grid conforming geometries. The accuracy of the method depends
on the detail of the boundary representation and efficiency requirements dictate the local refinement of the
lattice [12]. A number of works have addressed the coupling of IB and LB methods. Feng and Michaelides
[14,15] report on continuous and discrete forcing models applied to sedimentation problems. Peng et al.
[27] couple a discrete forcing model to a multi-relaxation time LB model considering variable resolution.
Shi and Phan-Tien [32] propose a model that integrates distributed Lagrange multipliers and fictitious domain
methods in the framework of LB models. In this paper, we present an alternative model coupling an LB model
of the incompressible Navier–Stokes equations with an IB technique. The algorithmic novelty of our work
consists of the simple way in which the LB model incorporates the IB forcing term. In addition, we investigate
two variants of coupling the boundary force with the Eulerian grid namely: a direct forcing (DF) and an inter-
polated forcing (IF) distinguished by the way in which the forcing term from the boundary is computed on the
grid nodes.

The present method is validated on simulations of the flow past an impulsively started circular cylinder
at moderate Reynolds numbers. The flow past an impulsively started cylinder is a well-established bench-
mark problem and the subject of detailed experimental investigations for Reynolds numbers ranging from
40 to 10,000 [9,10,4]. The simulation of this flow is challenging as it requires the accurate tracking of the
initial sharp vorticity generation on the cylinder surface and the precise identification of the subsequent
regions of the disruption of the primarily shedded vortices by their induced secondary vortical fields.
There is a plethora of results from simulations using different numerical methods such as finite difference
schemes [8,2], vortex methods [20], wavelet collocation schemes [19], and lattice-Boltzmann models [22]. In
these simulations, diagnostics such as streamlines, vorticity contours and in particular the drag coefficient
have been used to elucidate the advantages and drawbacks of the different methodologies. We present
such diagnostics and use the value of the asymptotic drag coefficient to establish the order of accuracy
of our method.

The paper is organized as follows: we first present in Section 2 the hybrid scheme and discuss the LB model
and the two variants of the IB algorithm. In Section 3, we present simulations of the flow around an impul-
sively started cylinder at low and moderate Reynolds numbers. We quantify the convergence of both IB
approaches and conclude in Section 4.

2. The model

2.1. Lattice-Boltzmann (LB) model

We consider viscous incompressible flows described by the velocity–pressure formulation of the Navier–
Stokes equations
ou

ot
þ ðu � rÞu ¼ �rp=qþ mr2uþ g ð1Þ

r � u ¼ 0 ð2Þ
where u the velocity, p the pressure, q the density of the fluid. The forcing term g accounts for the no-slip con-
dition at the boundary and it is introduced to enable the use of the immersed boundary technique presented
below.
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We solve the equations of motion (1) and (2) using a lattice-Boltzmann algorithm [34]. The LB model
entails the evolution of particle distribution functions fi on a d-dimensional regular lattice with z links at each
lattice point r. The label i denotes velocity directions and runs between 0 and z. DdQz + 1 is a standard lattice
topology classification. The D2Q9 lattice we use here has the following velocity vectors v0 = (0,0),
vi = (cos((i � 1)p/2), sin((i � 1)p/2)) for i = 1–4, and vi = (cos((i � 5)p/2 + p/4), sin((i � 5)p/2 + p/4)) for
i = 5 � 8 in lattice units.

The lattice-Boltzmann dynamics are given by
fiðrþ Dtvi; t þ DtÞ ¼ fiðr; tÞ þ
1

s
ðf eq

i ðr; tÞ � fiðr; tÞÞ þ Dt
wiq
c2

s

vi � g ð3Þ
where Dt is the time step of the simulation, s the relaxation time, cs ¼ 1=
ffiffiffi
3
p

is the speed of sound and wi are
weights chosen as w0 = 4/9, wi = 1/9 for i = 1 � 4 and wi = 1/36 for i = 5 � 8. The equilibrium distribution
function f eq

i is a function of the density q and the fluid velocity u defined as
q ¼
Xz

i¼0

fi; qu ¼
Xz

i¼0

fivi ð4Þ
The equilibrium distribution function is chosen as
f eq
i ðr; tÞ ¼ wiq 1þ vi � u

c2
s

þ ðvi � uÞ2

2c4
s

� u2

2c2
s

 !
ð5Þ
We have also performed simulations using an alternative forcing term as described by Guo et al. [16]. Guo’s
model eliminates explicitly non-negligible spurious temporal and spatial terms. The present results do not indi-
cate any significant differences between the two approaches.

Performing a Chapman–Enskog expansion on the LB dynamics [7] shows, in the low Mach number limit,
that Eqs. (1) and (2) are recovered with a kinematic viscosity expressed as
m ¼ ðDrÞ2

Dt
1

3
s� 1

2

� �
ð6Þ
where the Mach number is defined as Ma = U/cs with U being the characteristic velocity of the system, and Dr

is the lattice spacing.

2.2. Immersed boundary (IB) methods

In immersed boundary methods the presence of the boundary is accounted by adding a forcing term on the
governing flow equations [28,30]. The forcing term is computed so as to enforce the no-slip boundary condi-
tion on the surface of the body. The equations are usually discretized on an Eulerian grid which does not need
to coincide with the location of the body and a forcing term has to be computed on the grid nodes. In the
present work, we follow the technique originally proposed by Mohd-Yusof [25] to determine the forcing term
that is required to impose a desired velocity ud at the boundary.

The governing equation (1) is rewritten as
ou

ot
¼ u�ðr; t þ DtÞ � uðr; tÞ

Dt
¼ �ðu � rÞu�rp þ mr2u ¼ RHS ð7Þ
where u* is the velocity at time t + Dt with no forcing term considered. Including a forcing term leads to
udðr; t þ DtÞ � uðr; tÞ
Dt

¼ RHSþ gðr; tÞ ð8Þ
where ud is the desired velocity. Subtracting Eq. (7) from (8) leads to an expression for the forcing term
gðr; tÞ ¼ udðr; t þ DtÞ � u�ðr; t þ DtÞ
Dt

ð9Þ
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This methodology differs from existing boundary enforcement schemes in several aspects. The LB–IB method
of Feng and Michaelides [14,15] relies on the explicit computation of g from Eq. (1). The present approach,
follows the works of Mohd-Yusof [25] and Fadlun et al. [13], and evaluates g by advancing to the solution
u*(r,t + Dt). This preliminary step can be treated in a very efficient manner thanks to two properties of the
LB method:

1. LB simulates a compressible flow so that the velocities u* only need computation in a neighborhood of the
boundaries.

2. This step involves only the streaming part of the LB model as the relaxation to the equilibrium distribution
(the second term of the right-hand side of Eq. (3)) does not change the velocity (qu ¼

P
f eq

i vi, see [7] for
details).

Other flexible boundary schemes in LB methods include the volumetric bounce back of Chen et al. [6] which
Li et al. [22] recently applied to the flow past an impulsively started cylinder. The complexity of the volumetric
bounce back is arguably higher, than the present LB–IB approach, as it involves more accounting and the
explicit discretization of the boundary into facets. The present approach allows implicit boundary representa-
tions in its IF variant (see below).

The coupling of LB and IB requires a procedure to enable the communication of the effect of the body force
between the Eulerian grids and the surface of the body. In the present paper, we investigate two variants: a
direct forcing (DF) and an interpolated forcing (IF) approach. The DF aims at distributing, on the lattice,
forces known along the boundary from Eq. (9). In turn, the IF determines velocities at lattice nodes close
to the boundary by using a second-order interpolation scheme and by applying accordingly a forcing term.
In the following we use lower-case and upper-case variables to represent value defined on the Eulerian lattice
and on the Lagrangian boundary, respectively.

2.2.1. Direct forcing approach (DF)

In the DF, velocity boundary conditions Ud are enforced on the boundary by determining a Lagrangian
forcing term which is subsequently distributed on the lattice. This is done by first performing an streaming
step to determine u* corresponding to the flow field without a forcing term. We then use a discretization of
delta function [28] to determine velocities along the boundary as
U�ðs; tÞ ¼
X

r

u�ðr; tÞdhðr� Rðs; tÞÞ ð10Þ
where s is the boundary coordinate, R(s, t) the boundary position and dh(r � R(s, t)) = Pad(ra � Ra(s, t)) is the
discrete delta function and a runs over the Cartesian coordinates. The discrete delta function is defined as
dhðxÞ ¼
1

4Dr 1þ cos pjxj
2Dr

� �� �
; if jxj 6 2Dr

0; otherwise

(
ð11Þ
The Lagrangian body force G(s, t) is found by using Eq. (9) and is in turn distributed on the lattice by
applying the same delta function dh. This leads to an Eulerian forcing term
gðr; tÞ ¼
X

s

Gðs; tÞdhðr� Rðs; tÞÞ ð12Þ
We note that distributing a Lagrangian force G using Eq. (12) implies that the desired velocity Ud is not
exactly enforced at the boundary. However, as we shall see below, the discrepancy reduces as the resolution
increases.

2.2.2. Interpolating force approach (IF)

Following the work of Fadlun et al. [13], the IF determines forces g1 in the direct vicinity of the boundary
so as to enforce velocities ud

1 via a bilinear interpolation scheme. The lattice nodes and the boundary points
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Fig. 1. Lattice nodes and boundary points involved in the interpolation procedure of (left) the x-component and (right) the y-component
of the velocity v1. Gray areas are the insides of the object defined by the boundary. Coordinates are expressed in simulation units.
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involved in the interpolation procedure are depicted in Fig. 1. Velocities in the direct vicinity of the boundary
are computed as
ud
1 ¼

Ud
0 þ d � u�2
1þ d

ð13Þ
where subscripts denote locations (see Fig. 1), d is the distance between lattice node 1 to boundary point 0.
3. Results

We apply the method to the simulation of viscous incompressible flows past an impulsively started cylinder
at moderate Reynolds numbers and investigate the convergence of the method.

3.1. Flow past an impulsively started cylinder

The flow past an impulsively started cylinder is initialized with the corresponding irrotational flow past a
cylinder of diameter D with speed u0 at infinity [1]. The velocity components are expressed in polar coordinates
as
ur ¼ u0 1� D2

4r2

� �
cos h; uh ¼ �u0 1þ D2

4r2

� �
sin h ð14Þ
The velocity components in Cartesian coordinates reads
ux ¼ ur cos h� uh sin h; uy ¼ ur sin hþ uh cos h ð15Þ

The distribution functions fi are initialized following a procedure detailed in [7,21]. We consider the Chap-

man–Enskog expansion of the functions fi in power series of a small parameter � as fi ¼ f ð0Þi þ �f
ð1Þ
i þ � � �. It is

shown that the zeroth-order is the equilibrium distribution function as described in Eq. (5) and that the first-
order is related to velocity gradients as [7]
�f ð1Þi ¼ �wis
c2

s

X
ab

QiaboaðqubÞ ð16Þ
where Qiab ¼ viavib � c2
s dab with dab being the Kronecker symbol.

The hydrodynamics of an incompressible fluid being well approximated by the zeroth and first-order of the
expansion [7], we use Eqs. (5) and (16) to determine the initial distribution functions according to Eq. (15). The
initial distribution functions are
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f0ðr; tÞ ¼ f eq
0 ðr; tÞ þ w0sðSxx þ SyyÞ

f1ðr; tÞ ¼ f eq
1 ðr; tÞ þ w1sð�2Sxx þ SyyÞ

f2ðr; tÞ ¼ f eq
2 ðr; tÞ þ w2sð�2Syy þ SxxÞ

f3ðr; tÞ ¼ f eq
3 ðr; tÞ þ w3sð�2Sxx þ SyyÞ

f4ðr; tÞ ¼ f eq
4 ðr; tÞ þ w4sð�2Syy þ SxxÞ

f5ðr; tÞ ¼ f eq
5 ðr; tÞ þ 2w5sð�Sxx � Syy � 3SxyÞ

f6ðr; tÞ ¼ f eq
6 ðr; tÞ þ 2w6sð�Sxx � Syy þ 3SxyÞ

f7ðr; tÞ ¼ f eq
7 ðr; tÞ þ 2w7sð�Sxx � Syy � 3SxyÞ

f8ðr; tÞ ¼ f eq
8 ðr; tÞ þ 2w8sð�Sxx � Syy þ 3SxyÞ

ð17Þ
where Sab = (oa(qub) + ob(qua))/2 is the strain rate tensor. Derivatives of the velocity are evaluated with a sec-
ond-order finite difference scheme.

We use the following boundary conditions on the velocity field. A Dirichlet condition is imposed at the
inlet, setting (ux,uy)(0,y) = (u0,0). At the outlet we impose a first-order accurate homogeneous Neumann con-
dition (ux,uy)(Lx,y) = (ux,uy)(Lx � 1,y). Periodic conditions are used in the y-direction. As for the initial con-
ditions, these boundary conditions are translated in terms of the distribution functions, this time using one-
sided finite differences for the strain rates. We note that this procedure requires the prior computation of
the inlet and outlet densities. Using Eq. (4), they are recovered from the boundary conditions and the outgoing
side of the distributions
qinlet ¼
ðf0 þ f2 þ f4Þ þ 2ðf3 þ f6 þ f7Þ

1� ux
; qoutlet ¼

ðf0 þ f2 þ f4Þ þ 2ðf1 þ f5 þ f8Þ
1þ ux

ð18Þ
3.2. Flow at a low Reynolds number Re = 40

We first consider the flow past an impulsively started cylinder at a low Reynolds number Re = 40. The cyl-
inder has a diameter D = 20 and is centered within a domain 100D � 100D. This domain size is chosen to
reduce artifacts due to boundary conditions and to coincide with the geometry proposed in Li et al. [22].
Fig. 2 shows the velocity on the flow axis downstream of the cylinder at various times T = 2Ut/D. We observe
a close match between the results obtained with the IF and Li’s results at all times. Simulation results obtained
with the DF differ slightly from the ones obtained with the IF with a discrepancy that is growing in time. Fig. 2
displays the maximum emax and mean hei error defined as
emax ¼ max
juDF

x ðxÞ � uIF
x ðxÞj

u0

and hei ¼ hju
DF
x ðxÞ � uIF

x ðxÞji
u0

ð19Þ
where x is a downstream location along the flow axis and h i denotes a spatial average.
Fig. 3 shows the evolution of the recirculation length L on the flow axis and of the drag coefficient

CD ¼ �2F =D=u2
0, where F is the force acting on the cylinder. There is agreement between the present simula-

tion results and the results from Li et al. [22] and Koumoutsakos and Leonard [20]. We observe that the recir-
culation length is overestimated when using the DF. This can be attributed to the mollification of the Dirac
delta function in the DF scheme which in a sense increases the effective diameter of the body. In contrast IF
does not rely on the mollification of the interface. We note that while the present resolution is relatively coarse
when compared to the one presented in Ref. [22] we obtain comparable results.

To quantify the convergence of the present IB–LB method, we measure the error associated to a given res-
olution when computing the drag coefficient around an impulsively started cylinder centered within a domain
of size 30D � 20D. The error associated to a given resolution Dx is defined as the difference between the aver-
aged value to the one obtained when considering the finest resolution. The boundary conditions are the same
as above. The drag coefficients computed considering the finest resolution, being 160 lattice nodes across the
cylinder, are CDF

D ¼ 1:6285 and CIF
D ¼ 1:6159. The evolution of the drag coefficient is monitored until T = 50

and an averaged value is measured between T = 45 and T = 50. Fig. 4 shows the convergence of the error
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when using the DF and the IF. We observe that the IF is almost second-order by exhibiting a 1.9 exponent,
whereas the DF shows an exponent of 1.5 when considering as an error measure the drag coefficient.

3.3. Flow at a moderate Reynolds number Re = 550

In a second impulsively started configuration, we increase the Reynolds number to Re = 550. The geometry
of the system is chosen to match the one chosen in [22] and is of size 60D � 34D with the cylinder centered
around the point (20D,17D) and the diameter D = 160. Fig. 5 shows the evolution of the velocity along the
flow axis behind the cylinder at different times T. Simulation results compare well with experiments by Bouard
and Coutanceau [4] and especially with LB simulations by Li et al. [22]. We however observe at T = 1 a slight
departure close to cylinder when using the IF. We measure a maximum and normalized difference between DF
and IF results of 4.3% at T = 1.

Fig. 6 shows the time evolution of the recirculation length L along the axis of the flow using the two
forcing approaches. From time T = 2 there is excellent agreement between the present simulations and
[22]. Similarly to what occurs when comparing velocities, the evolution of L differs at early times when
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from [22] (plus).
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using the IF. The time evolution of the drag coefficient is plotted in Fig. 6. We observe a quantitative
match between present simulation results as compared to simulations by Li et al. [22] and Koumoutsakos
and Leonard [20].

Considering this moderate Reynolds number, we observe that differences between flows computed using
DF and IF are small as compared to differences obtained at Re = 40. This is due to the fact that the resolution
needed to resolve all scales involved in the system is such that errors due to the boundary conditions are neg-
ligible at this resolution.

3.4. Vortex shedding of an impulsively started flow at Re = 200

We apply the present LB–IB method to the simulation of the periodic shedding of an impulsively started
flow past a circular cylinder at Reynolds number Re = 200. The computational domain is 45D � 20D with the
cylinder of diameter D = 40 centered at (15D, 10D). We use this configuration to validate the method for sim-
ulations at earlier as well as longer times and assess the capabilities of the method in capturing bluff body flow
characteristics such as the Strouhal frequency.

Figs. 7 and 8 display the vorticity and velocity fields at early times for the DF and IF variants. We note that
the vorticity field is largely similar from both simulations but certain differences are evident near the stagna-
tion points and the recirculation zone. The difference in the boundary treatment is most apparent around stag-
nation points. For DF, the vorticity in the attachment and separation regions remains quite smooth (see
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Fig. 7a, c and e) and the limiting streamline (originating at Y = 0 in Figs. 8a, c and e) always shows some
deflection some distance above the wall. IF clearly displays a boundary layer developing more slowly near
the front attachment point and some oscillations which are then carried downstream (see Figs. 7b, d and
f). The same comment applies to the other stagnation points along the cylinder near the separation points
and the reattachment region.

This behavior is expected as the stencil of IF does not smooth the forcing term and the lattice locations
where it applies the x and y components of the forcing can present jumps(see Fig. 1).

To close this comparison, we remark that this difficulty, embodied by the double recirculation cell at
T = 1(Fig. 8b), is most probably related to the slower circulation length growth already observed for the flow
of Section 3.3 (Fig. 6).

The long time simulation leads to vortex shedding thus helping us assess the accuracy of the method when
vortex structures interact with the downstream boundary conditions. Fig. 9 displays the vorticity field in the
whole domain at the end of the simulation. The evolution of the force coefficient from the simulation using the
IF approach (the DF results are almost indistinguishable) is shown in Fig. 10. The average value of the drag
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4. Conclusion

We present a novel method to couple a lattice-Boltzmann model of the Navier–Stokes equations with an
immersed boundary method for the simulation of flows past complex boundaries. The present method relies
on the simple incorporation of a forcing term in the LB model to enforce the no-slip boundary condition. The
proposed LB–IB method has been validated with the simulation of the flow past an impulsively started cylin-
der at low and moderate Reynolds numbers. The simulation results are in good agreement with available
experimental results and related benchmark computations. We remark that the present method has a straight-
forward implementation and allows for a direct computation of the forces experienced by the body.

We have examined two alternative approaches to exchange information between the boundary and the grid
nodes, namely the interpolating forcing (IF) and the direct forcing (DF) approach. We note that the IF can
handle implicit surface representations, making it suitable for level set representations that facilitate simula-
tions of flows past complex deforming boundaries as in the case of multiphase flows. The IF and the DF
approach exhibit an order of accuracy of 1.9 and 1.5 respectively, when computing the asymptotic value of
the drag coefficient of the flow past an impulsively started cylinder. The higher accuracy of the IF is attributed
to its non-mollified representation of the boundary which at the same time results in spurious vortical struc-
tures near under resolved stagnation points and thin boundary layers.

Present work involves the extension of the method to three-dimensions for the simulations of biological
flows past unsteady complex geometries.
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